Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

  • 1741 Accesses

Abstract

The method outlined in the Chaps. 1521 has been used for revealing nonlinear deterministic and stochastic behaviors in a variety of problems, ranging from physics, to neuroscience, biology and medicine. In most cases, alternative procedures with strong emphasis on deterministic features have been only partly successful, due to their inappropriate treatment of the dynamical fluctuations [1]. In this chapter, we provide a list of the investigated phenomena using the introduced reconstruction method. In the “outlook” possible research directions for future are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The fBm is a Gaussian stochastic process \(B_H(t)\) with Hurst exponent \( 0<H<1\) and the following properties

    (i) \(\langle B_H(t) \rangle =0\),

    (ii) \(\langle B_H(t) B_H(t') \rangle = \frac{\sigma ^2}{2} (t^{2H} + t'^{2H} - |t-t'|^{2H})\),

    where \(\sigma \) is the variance parameter.

    (iii) \(B_H(\lambda t) {\mathop {=}\limits ^{\text {law}}} \lambda ^H B_H(t) ~~~ \lambda >0\).

    (iv) The fBm can be constructed from the Wiener process (classical Brownian motion), \(W(t)=B_{H=1/2}(t)\), by a linear transformation of the form,

    $$ B_H (t) = B_H (0) + \frac{1}{\varGamma (H+1/2)}\left\{ \int _{-\infty }^0\left[ (t-s)^{H-1/2}-(-s)^{H-1/2}\right] \,dW(s) + \int _0^t (t-s)^{H-1/2}\,dW(s)\right\} .\; $$

    (v) Successive increments of the fBm are dependent. The following relationship holds for \(t_1<t_2<t_3<t_4\)

    $$ \langle [B_H(t_4)-B_H(t_3)] [B_H(t_2)-B_H(t_1)] \rangle = H(2H-1) \int _{t_1} ^{t_2} \int _{t_3} ^{t_4} (u-v)^{2H-2} du dv, $$

    for \(H > 1/2\) (\(H < 1/2\)) the increments of the process are positively (negatively) correlated. The process \(B_H(t)\) has independent increments if and only if \(H=\frac{1}{2}\).

  2. 2.

    The Wick product is related to fractional path-wise for \(H>1/2\) as

    $$\begin{aligned}&\sum _{i=1}^n g(B_H(t_{i-1})) \diamond (B_H(t_{i}) - B_H(t_{i-1})) = \sum _{i=1}^n g(B_H(t_{i-1})) (B_H(t_{i}) - B_H(t_{i-1})) \\\nonumber \\&- \sum _{i=1} ^n \frac{1}{2} g'(B_H(t_{i-1})) [ (t_i)^{2H} - (t_{i-1})^{2H} - (t_i-t_{i-1})^{2H}]. \end{aligned}$$

    In the limit \(n\rightarrow \infty \) we find

    $$ \int _0^t g(B_H(t)) \diamond dB_H(t) = \int _0^t g(B_H(t)) dB_H(t) - H \int _0^t g'(B_H(t)) t^{2H-1} ~dt $$

    where \(\int _0^t g(B_H(t)) dB_H(t)\) is the path-wise Riemann–Stieltjes integral.

References

  1. R. Friedrich, J. Peinke, M. Sahimi, M.R. Rahimi Tabar, Phys. Rep. 506, 87 (2011)

    Google Scholar 

  2. J. Gradisek, I. Grabec, S. Siegert, R. Friedrich, Mech. Syst. Signal Process. 16(5), 831 (2002)

    ADS  Google Scholar 

  3. J. Gradisek, S. Siegert, R. Friedrich, I. Grabec, J. Sound Vib. 252(3), 545 (2002)

    ADS  Google Scholar 

  4. H. Purwins, S. Amiranashvili, Phys. J. 6, 21 (2007)

    Google Scholar 

  5. H.U. Bödeker, M. Röttger, A.W. Liehr, T.D. Frank, R. Friedrich, H.G. Purwins, Phys. Rev. E 67, 056220 (2003)

    ADS  Google Scholar 

  6. A.W. Liehr, H.U. Bödeker, M. Röttger, T.D. Frank, R. Friedrich, H. Purwins, New J. Phys. 5, 89 (2003)

    ADS  Google Scholar 

  7. M. Siefert, A. Kittel, R. Friedrich, J. Peinke, Europhys. Lett. 61, 466 (2003)

    ADS  Google Scholar 

  8. M. Siefert, J. Peinke, Phys. Rev. E 70, 015302 (2004)

    ADS  Google Scholar 

  9. R. Friedrich, S. Siegert, J. Peinke, S.T. Lück, M. Siefert, M. Lindemann, J. Raethjen, G. Deuschl, G. Pfister, Phys. Lett. A 271, 217 (2000)

    Google Scholar 

  10. G.R. Jafari, S.M. Fazeli, F. Ghasemi, S.M. Vaez Allaei, M.R. Rahimi Tabar, A. Iraji Zad, G. Kavei, Phys. Rev. Lett. 91, 226101 (2003)

    ADS  Google Scholar 

  11. M. Wächter, F. Riess, T. Schimmel, U. Wendt, J. Peinke, Eur. Phys. J. B 41, 259 (2004)

    ADS  Google Scholar 

  12. G.R. Jafari, M.R. Rahimi Tabar, A. zad, G. Kavei, Phys. A 375, 239 (2007)

    Google Scholar 

  13. S.M. Fazeli, A.H. Shirazi, G.R. Jafari, New J. Phys. 10, 083020 (2008)

    ADS  Google Scholar 

  14. P. Sangpour, G.R. Jafari, O. Akhavan, A.Z. Moshfegh, M.R. Rahimi Tabar, Phys. Rev. B 71, 155423 (2005)

    ADS  Google Scholar 

  15. E. Anahua, M. Lange, F. B\(\ddot{o}\)ttcher, St. Barth, J. Peinke, Stochastic Analysis of the Power Output for a Wind Turbine, DEWEK (2004)

    Google Scholar 

  16. E. Anahua, St. Barth, J. Peinke, in Wind Energy - Proceedings of the Euromech Colloquium, ed. by J. Peinke, P. Schaumann, St. Barth (Springer, Berlin, 2007), p. 173

    Google Scholar 

  17. E. Anahua, St. Barth, J. Peinke, Markovian power curves for wind turbines. Wind Energy 11, 219 (2008)

    ADS  Google Scholar 

  18. J. Gottschall, J. Peinke, Environ. Res. Lett. 3, 015005 (2008)

    ADS  Google Scholar 

  19. P. Milan, M. Wächter, J. Peinke, Phys. Rev. Lett. 110, 138701 (2013)

    ADS  Google Scholar 

  20. S. Kriso, R. Friedrich, J. Peinke, P. Wagner, Phys. Lett. A 299, 287 (2002)

    ADS  Google Scholar 

  21. F. Ghasemi, A. Bahraminasab, M.S. Movahed, K.R. Sreenivasan, S. Rahvar, M.R. Rahimi Tabar, J. Stat. Mech. P11008 (2006)

    Google Scholar 

  22. T. Kuusela, Phys. Rev. E 69, 031916 (2004)

    Google Scholar 

  23. D.G. Luchinsky, M.M. Millonas, V.N. Smelyanskiy, A. Pershakova, A. Stefanovska, P.V. McClintock, Phys. Rev. E 72, 021905 (2005)

    ADS  Google Scholar 

  24. F. Ghasemi, J. Peinke, M.R. Rahimi Tabar, M. Sahimi, Int. J. of Mod. Phys. C 17, 571 (2006)

    Google Scholar 

  25. F. Ghasemi, M. Sahimi, J. Peinke, M.R. Rahimi Tabar, J. Biol. Phys. 32, 117 (2006)

    Google Scholar 

  26. M.R. Rahimi Tabar, F. Ghasemi, J. Peinke, R. Friedrich, K. Kaviani, F. Taghavi, S. Sadeghi, G. Bijani, M. Sahimi, Comput. Sci. Eng. 8, 54 (2006)

    Google Scholar 

  27. J. Kirchner, W. Meyer, M. Elsholz, B. Hensel, Phys. Rev. E 76, 021110 (2007)

    ADS  MathSciNet  Google Scholar 

  28. P. Sura, S.T. Gille, J. Mar. Res. 61, 313 (2003)

    Google Scholar 

  29. P. Sura, J. Atmos. Sci. 60, 654 (2003)

    ADS  Google Scholar 

  30. J. Egger, T. Jonsson, Tellus A 51, 1 (2002)

    ADS  Google Scholar 

  31. M.R. Rahimi Tabar, et al., in Modelling Critical and Catastrophic Phenomena in Geoscience: A Statistical Physics Approach. Lecture Notes in Physics, vol. 705 (Springer, Berlin, 2007), p. 281

    Google Scholar 

  32. P. Manshour, S. Saberi, M. Sahimi, J. Peinke, A.F. Pacheco, M.R. Rahimi Tabar, Phys. Rev. Lett. 102, 014101 (2009)

    ADS  Google Scholar 

  33. P. Manshour, F. Ghasemi, T. Matsumoto, G. G\(\acute{o}\)mez, M. Sahimi, J. Peinke, A.F. Pacheco, M.R. Rahimi Tabar, Phys. Rev. E 82, 036105 (2010)

    Google Scholar 

  34. J. Prusseit, K. Lehnertz, Phys. Rev. Lett. 98, 138103 (2007)

    ADS  Google Scholar 

  35. K. Lehnertz, J. Biol. Phys. 34, 253 (2008)

    Google Scholar 

  36. M. Kern, O. Buser, J. Peinke, M. Siefert, L. Vulliet, Phys. Lett. A 336, 428 (2005)

    ADS  Google Scholar 

  37. T. Stemler, J.P. Werner, H. Benner, W. Just, Phys. Rev. Lett. 98, 044102 (2007)

    ADS  Google Scholar 

  38. A. Bahraminasab, F. Ghasemi, A. Stefanovska, P.V.E. McClintock, H. Kantz, Phys. Rev. Lett. 100, 084101 (2008)

    ADS  Google Scholar 

  39. N. Stepp, T.D. Frank, Eur. Phys. J. B 67, 251 (2009)

    ADS  Google Scholar 

  40. A.M. Van Mourik, A. Daffertshofer, P.J. Beek, Biol. Cybern. 94, 233 (2006)

    Google Scholar 

  41. J. Gottschall, J. Peinke, V. Lippens, V. Nagel, Phys. Lett. A 373, 811 (2008)

    ADS  Google Scholar 

  42. A.M. Van Mourik, A. Daffertshofer, P.J. Beek, Phys. Lett. A 351, 13 (2006)

    ADS  MathSciNet  Google Scholar 

  43. M. Strumik, W. Macek, Phy. Rev. E 78, 026414 (2008)

    ADS  Google Scholar 

  44. D.G. Luchinsky, V.N. Smelyanskiy, A. Duggento, P.V.E. McClintock, Phys. Rev. E 77, 061105 (2008)

    ADS  MathSciNet  Google Scholar 

  45. G.R. Jafari, M. Sahimi, M.R. Rasaei, M.R. Rahimi Tabar, Phys. Rev. E 83, 026309 (2011)

    ADS  Google Scholar 

  46. F. Shayeganfar, S. Jabbari-Farouji, M.S. Movahed, G.R. Jafari, M.R. Rahimi Tabar, Phys. Rev. E 81, 061404 (2010)

    ADS  Google Scholar 

  47. A. Farahzadi et al., Europhys. Lett. 90, 10008 (2010)

    ADS  Google Scholar 

  48. S. Kimiagar, M.S. Movahed, S. Khorram, M.R. Rahimi Tabar, J. Stat. Phys. 143, 148 (2011)

    ADS  MathSciNet  Google Scholar 

  49. F. Shayeganfar, S. Jabbari-Farouji, M.S. Movahed, G.R. Jafari, M.R. Rahimi Tabar, Phys. Rev. E 80, 061126 (2009)

    ADS  Google Scholar 

  50. A. Bahraminasab, F. Ghasemi, A. Stefanovska, P.V.E. McClintock, R. Friedrich, New J. Phys. 11, 103051 (2009)

    ADS  Google Scholar 

  51. K. Patanarapeelert, T.D. Frank, I.M. Tang, Math. Comput. Model. 53, 122 (2011)

    Google Scholar 

  52. H.U. Bödeker, C. Beta, T.D. Frank, E. Bodenschatz, Europhys. Lett. 90, 28005 (2010)

    ADS  Google Scholar 

  53. R. Stresing, J. Peinke, R.E. Seoud, J.C. Vassilicos, Phys. Rev. Lett. 104, 194501 (2010)

    ADS  Google Scholar 

  54. G. Nabiyouni, B.J. Farahani, Appl. Surface Sci. 256, 674 (2009)

    ADS  Google Scholar 

  55. A.A. Ramos, Astron. Astrophys. 494, 287 (2009)

    Google Scholar 

  56. M.H. Peters, J. Chem. Phys. 134, 025105 (2011)

    ADS  Google Scholar 

  57. S.M. Mousavi et al., Sci. Rep. 7, 4832 (2017)

    ADS  Google Scholar 

  58. C. Honisch, R. Friedrich, F. Hörner, C. Denz, Phys. Rev. E 86, 026702 (2012)

    ADS  Google Scholar 

  59. N. Hozé, D. Holcman, Annu. Rev. Stat. Appl. 4, 189 (2017)

    Google Scholar 

  60. F. Lenz, A.V. Chechkin, R. Klages, Constructing a stochastic model of bumblebee flights from experimental data. PLoS One 8, e59036 (2013)

    ADS  Google Scholar 

  61. J.M. Miotto, H. Kantz, E.G. Altmann, Phys. Rev. 95, 032311 (2017)

    ADS  Google Scholar 

  62. D. Nickelsen, A. Engel, Phys. Rev. Lett. 110, 214501 (2013)

    ADS  Google Scholar 

  63. A. Hadjihosseini, J. Peinke, N.P. Hoffmann, New J. Phys. 16(5), 053037 (2014)

    ADS  Google Scholar 

  64. A. Hadjihoseini, P.G. Lind, N. Mori, N.P. Hoffmann, J. Peinke, Europhys. Lett. 120, 30008 (2018)

    ADS  Google Scholar 

  65. M. Tutkun, Phys. D 351, 53 (2017)

    MathSciNet  Google Scholar 

  66. M.S. Melius, M. Tutkun, R.B. Cal, J. Renew. Sustain. Energy 6, 023121 (2014)

    Google Scholar 

  67. C. Erkal, A.A. Cecen, Phys. Rev. E 89, 062907 (2014)

    ADS  Google Scholar 

  68. A. Mora, M. Haase, Nonlinear Dyn. 44, 307 (2006)

    Google Scholar 

  69. M.C. Mariani, O.K. Tweneboah, H. Gonzalez-Huizar, L. Serpa, Pure Appl. Geophys. 173, 2357 (2016)

    ADS  Google Scholar 

  70. G. Deco, V.K. Jirsa, P.A. Robinson, M. Breakspear, K. Friston, PLoS Comput. Biol. 4, e1000092 (2008)

    ADS  Google Scholar 

  71. A. Melanson, Effective stochastic models of neuroscientific data with application to weakly electric fish, Doctoral thesis, University of Ottawa (2019)

    Google Scholar 

  72. P. Jenny, M. Torrilhon, S. Heinz, J. Comput. Phys. 229, 1077 (2010)

    ADS  MathSciNet  Google Scholar 

  73. Z. Czechowski, Chaos 26, 053109 (2016)

    ADS  MathSciNet  Google Scholar 

  74. Z. Czechowski, in Complexity of Seismic Time Series, ed. by T. Chelidze, F. Vallianatos, L. Telesca (Elsevier, Amsterdam, 2018), pp. 141–160

    Google Scholar 

  75. S. Chen, N. Li, S. Hsu, J. Zhang, P. Lai, C. Chan, W. Chen, Soft Matter 10, 3421 (2014)

    ADS  Google Scholar 

  76. E. Boujo, N. Noiray, Proc. R. Soc. A 473, 0894 (2016)

    Google Scholar 

  77. T.D. Frank, Phys. Rev. E 71, 031106 (2005)

    ADS  Google Scholar 

  78. J. Estevens, P. Rocha, J. Boto, P.G. Lind, Chaos 27, 113106 (2017)

    ADS  MathSciNet  Google Scholar 

  79. Z. Farahpour et al., Phys. A 385, 601 (2007)

    Google Scholar 

  80. F. Shayeganfar, M. Hölling, J. Peinke, M.R. Rahimi Tabar, Phys. A 391, 209 (2012)

    Google Scholar 

  81. C. García, A. Otero, P. Félix, J. Presedo, D. Márquez, Phys. Rev. E 96, 022104 (2017)

    ADS  MathSciNet  Google Scholar 

  82. D. Nickelsen, J. Stat. Mech. 073209 (2017)

    Google Scholar 

  83. A.Y. Gorobets, J.M. Borrero, S. Berdyugina, Astrophys. J. Lett. 825, L18 (2016)

    Google Scholar 

  84. S. Kimiagar, G.R. Jafari, M.R. Rahimi Tabar, J. Stat. Mech. P0, 2008 (2010)

    Google Scholar 

  85. M. Anvari, B. Werther, G. Lohmann, M. Wächter, J. Peinke, H.-P. Beck, Solar Energy 157, 735 (2017)

    ADS  Google Scholar 

  86. M. Anvari et al., Phys. Rev. E 87, 062139 (2013)

    ADS  Google Scholar 

  87. D. Bastine, L. Vollmer, M. Wächter, J. Peinke, Energies 11, 612 (2018)

    Google Scholar 

  88. B. Lehle, J. Peinke, Phys. Rev. E 97, 012113 (2018)

    ADS  Google Scholar 

  89. B. Wahl, U. Feudel, J. Hlinka, M. Wächter, J. Peinke, J.A. Freund, Eur. Phys. J. B 90, 197 (2017)

    ADS  Google Scholar 

  90. L. Barnett, A. Seth, Detectability of Granger causality for subsampled continuous-time neurophysiological processes. J. Neurosci. Methods 275, 93 (2017)

    Google Scholar 

  91. T. Scholz et al., Phys. Lett. A 381, 194 (2017)

    MathSciNet  Google Scholar 

  92. A. Melanson, J.F. Mejias, J. James Jun, L. Maler, A. Longtin, eNeuro 4, ENEURO.0355-16 (2017)

    Google Scholar 

  93. R. Naud, A. Payeur, A. Longtin, Phys. Rev. X 7, 031045 (2017)

    Google Scholar 

  94. M. Baldovin, A. Puglisi, A. Vulpiani, J. Stat. Mech. 043207 (2018)

    Google Scholar 

  95. C. Yildiz, M. Heinonen, J. Intosalmi, H. Mannerström, H. Lähdesmäki, Machine Learning in Signal Processing, MLSP (2018)

    Google Scholar 

  96. M. Baldovin, A. Puglisi, A. Vulpiani, PLoS ONE 14(2), e0212135 (2019)

    Google Scholar 

  97. M. Greiner, J. Giesemann, P. Lipa, Phys. Rev. E 56, 4263 (1997)

    ADS  Google Scholar 

  98. A. Riegert, N. Baba, K. Gelfert, W. Just, H. Kantz, Phys. Rev. Lett. 94, 054103 (2005)

    ADS  Google Scholar 

  99. V.N. Smelyanskiy, D.G. Luchinsky, A. Stefanovska, P.V.E. McClintock, Phys. Rev. Lett. 94, 098101 (2005)

    ADS  Google Scholar 

  100. V.N. Smelyanskiy, D.G. Luchinsky, D.A. Timuçin, A. Bandrivskyy, Phys. Rev. E 72, 026202 (2005)

    ADS  Google Scholar 

  101. P.G. Lind, A. Mora, J.A. Gallas, M. Haase, Phys. Rev. E 72, 056706 (2005)

    ADS  Google Scholar 

  102. S. Sato, T. Kitamura, Phys. Rev. E 73, 026119 (2006)

    ADS  Google Scholar 

  103. I. Horenko, C. Hartmann, C. Schütte, F. Noe, Phys. Rev. E 76, 016706 (2007)

    ADS  Google Scholar 

  104. E. Racca, F. Laio, D. Poggi, L. Ridolfi, Phys. Rev. E 75, 011126 (2007)

    ADS  Google Scholar 

  105. T.L. Borgne, M. Dentz, J. Carrera, Phys. Rev. E 78, 026308 (2008)

    ADS  MathSciNet  Google Scholar 

  106. J. Masoliver, J. Perell\(\acute{o}\), Phys. Rev. E 78, 056104 (2008)

    Google Scholar 

  107. A. Fulinski, Europhys. Lett. 118, 60002 (2017)

    ADS  Google Scholar 

  108. S. Liao, High-dimensional problems in stochastic modelling of biological processes, Doctoral thesis, University of Oxford (2017)

    Google Scholar 

  109. N. Schaudinnus, Stochastic modeling of biomolecular systems using the data-driven Langevin equation, Doctoral thesis, Albert-Ludwigs-Universität

    Google Scholar 

  110. N. Schaudinnus, A.J. Rzepiela, R. Hegger, G. Stock, J. Chem. Phys. 138, 204106 (2013)

    ADS  Google Scholar 

  111. N. Schaudinnus, B. Bastian, R. Hegger, G. Stock, Phys. Rev. Lett. 115, 050602 (2015)

    ADS  Google Scholar 

  112. J.N. Pedersen, L. Li, C. Gradinaru, R.H. Austin, E.C. Cox, H. Flyvbjerg, Phys. Rev. E 94, 062401 (2016)

    ADS  MathSciNet  Google Scholar 

  113. D. Schnoerr, R. Grima, G. Sanguinetti, Cox process representation and inference for stochastic reaction-diffusion processes. Nat. Commun. 7, 11729 (2016)

    ADS  Google Scholar 

  114. D. Schnoerr, G. Sanguinetti, R. Grima, Approximation and inference methods for stochastic biochemical kineticsa tutorial review. J. Phys. A 50, 093001 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  115. A.P. Browning, S.W. McCue, R.N. Binny, M.J. Plank, E.T. Shah, M.J. Simpson, Inferring parameters for a lattice-free model of cell migration and proliferation using experimental data. J. Theoret. Biol. 437, 251 (2017)

    MathSciNet  MATH  Google Scholar 

  116. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  117. J. Argyris, G. Faust, M. Haase, R. Friedrich, An Exploration of Dynamical Systems and Chaos (Springer, New York, 2015)

    MATH  Google Scholar 

  118. G. Jumarie, Maximum Entropy, Information Without Probability and Complex Fractals, Classical and Quantum Approach. Fundamental Theories of Physics, vol. 112 (Kluwer Academic Publishers, Dordrecht, 2000)

    Google Scholar 

  119. G. Jumarie, Formal calculus for real-valued fractional Brownian motions prospects in systems scienc. Kybernetes 35, 1391 (2006)

    Google Scholar 

  120. T.E. Duncan, Y. Hu, B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion, I. Theory, SIAM J. Control Optim. 38 582 (2000)

    MathSciNet  MATH  Google Scholar 

  121. Y. Hu, B. Oksendal, Fractional white noise calculus and applications to finance. Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 6, 1–32 (2003)

    MathSciNet  MATH  Google Scholar 

  122. C. Bender, P. Parczewski, Approximating a geometric fractional Brownian motion and related processes via discrete Wick calculus. Bernoulli 16, 389 (2010)

    MathSciNet  MATH  Google Scholar 

  123. W. Xiao, J. Yu, Asymptotic theory for estimating drift parameters in the fractional Vasicek model. Econ. Theory 1–34, (2018)

    Google Scholar 

  124. K. Sekimoto, Langevin equation and thermodynamics. Prog. Theor. Phys. Suppl. 130, 17 (1998)

    ADS  Google Scholar 

  125. U. Seifert, From stochastic thermodynamics to thermodynamic inference. Annu. Rev. Condens. Matter Phys. 10 (2019)

    ADS  Google Scholar 

  126. U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012)

    ADS  Google Scholar 

  127. J. Peinke, M.R. Rahimi Tabar, M. Wächter, Annu. Rev. Condens. Matter Phys. 10 (2019)

    ADS  Google Scholar 

  128. U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005)

    ADS  Google Scholar 

  129. C. Jarzynski, Rare events and the convergence of exponentially averaged work values. Phys. Rev. E 73, 46105 (2006)

    ADS  Google Scholar 

  130. N. Abedpour, R. Asgari, M.R. Rahimi Tabar, Phys. Rev. Lett. 104, 196804 (2010)

    ADS  Google Scholar 

  131. C. Renner, J. Peinke, R. Friedrich, On the interaction between velocity increment and energy dissipation in the turbulent cascade, arXiv:physics/0211121

  132. P. Manshour, M. Anvari, N. Reinke, M. Sahimi, M.R. Rahimi Tabar, Sci. Rep. 6, 27452 (2016)

    ADS  Google Scholar 

  133. N. Reinke, D. Nickelsen, A. Engel, J. Peinke, Application of an integral fluctuation theorem to turbulent flows. Springer Proc. Phys. 165, 9–25 (2016)

    MathSciNet  Google Scholar 

  134. N. Reinke, A. Fuchs, D. Nickelsen, J. Peinke, On universal features of the turbulent cascade in terms of non-equilibrium thermodynamics. J. Fluid Mech. 848, 117 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  135. T. Speck, U. Seifert, Integral fluctuation theorem for the housekeeping heat. J. Phys. 38, L581 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  136. M. Esposito, Ch. Van den Broeck, Three detailed fluctuation theorems. Phys. Rev. Lett. 104, 090601 (2010)

    ADS  MathSciNet  Google Scholar 

  137. A.N. Kolmogorov, A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  138. B. Castaing, The temperature of turbulent flows. Journal de Physique II 6, 105 (1996)

    ADS  Google Scholar 

  139. F. Chillà, J. Peinke, B. Castaing, Multiplicative process in turbulent velocity statistics: a simplified analysis. Journal de Physique II 6, 455 (1996)

    ADS  Google Scholar 

  140. P.-O. Amblard, J.-M. Brossier, On the cascade in fully developed turbulence. The propagator approach versus the Markovian description. Eur. Phys. J. B 12, 579 (1999)

    ADS  Google Scholar 

  141. A. Polyakov, Turbulence without pressure. Phys. Rev. E 52, 6183 (1995)

    ADS  MathSciNet  Google Scholar 

  142. V. Yakhot, Probability density and scaling exponents of the moments of longitudinal velocity difference in strong turbulence. Phys. Rev. E 57, 1737 (1998)

    ADS  Google Scholar 

  143. J. Davoudi, M.R. Rahimi Tabar, Phys. Rev. Lett. 82, 1680 (1999)

    ADS  Google Scholar 

  144. J. Friedrich, R. Grauer, Generalized description of intermittency in turbulence via stochastic methods (2016), arXiv:1610.04432

  145. J. Friedrich, Closure of the Lundgren-Monin-Novikov hierarchy in turbulence via a Markov property of velocity increments in scale, Doctoral thesis, Ruhr-Universität Bochum, Universitätsbibliothek (2017)

    Google Scholar 

  146. J. Friedrich, G. Margazoglou, L. Biferale, R. Grauer, Phys. Rev. E 98, 023104 (2018)

    ADS  Google Scholar 

  147. D. Nickelsen, Markov processes linking thermodynamics and turbulence, Ph.D. thesis, University of Oldenburg (2014)

    Google Scholar 

  148. D. Nickelsen, Master equation for She-Leveque scaling and its classification in terms of other Markov models of developed turbulence. J. Stat. Mech.: Theory Exp. 073209 (2017)

    Google Scholar 

  149. E.A. Novikov, Infinitely divisible distributions in turbulence. Phys. Rev. E 50, R3303 (1994)

    ADS  Google Scholar 

  150. B. Castaing, B. Dubrulle, Fully developed turbulence: a unifying point of view. Journal de Physique II 5, 895 (1995)

    ADS  Google Scholar 

  151. Z. She, E.C. Waymire, Quantized energy cascade and log-poisson statistics in fully developed turbulence. Phys. Rev. Lett. 74, 262 (1995)

    ADS  Google Scholar 

  152. A. Arneodo, J.F. Muzy, S.G. Roux, Experimental analysis of self-similarity and random cascade processes: application to fully developed turbulence data. Journal de Physique II 7, 363 (1997)

    ADS  Google Scholar 

  153. M. Anvari, K. Lehnertz, M.R. Rahimi Tabar, J. Peinke, Sci. Rep. 6, 35435 (2016)

    Google Scholar 

  154. Z. She, E. Leveque, Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72, 336 (1994)

    ADS  Google Scholar 

  155. R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29(1), 255 (1966)

    ADS  MATH  Google Scholar 

  156. H. Leia, N.A. Bakera, X. Li, Data-driven parameterization of the generalized Langevin equation. Proc. Natl. Acad. Sci. 113, 14183 (2016)

    MathSciNet  MATH  Google Scholar 

  157. H. Mori, Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33, 423 (1965)

    ADS  MATH  Google Scholar 

  158. R. Zwanzig, Statistical mechanics of irreversibility. Lect. Theor. Phys. 3, 106 (1961)

    MathSciNet  Google Scholar 

  159. P.C. Bresslo, J.M. Newby, Rev. Mod. Phys. 85, 135 (2013)

    ADS  Google Scholar 

  160. E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965)

    ADS  Google Scholar 

  161. A. Baule, A. Friedrich, Phys. Rev. E 71, 026101 (2005)

    ADS  MathSciNet  Google Scholar 

  162. F. Sanda, S. Mukamel, Phys. Rev. E 72, 031108 (2005)

    ADS  MathSciNet  Google Scholar 

  163. E. Barkai, I.M. Sokolov, J. Stat. Mech. P08001 (2007)

    Google Scholar 

  164. A. Baule, R. Friedrich, Europhys. Lett. 77, 10002 (2007)

    ADS  Google Scholar 

  165. A. Baule, R. Friedrich, Europhys. Lett. 79, 60004 (2007)

    ADS  Google Scholar 

  166. M. Niemann, H. Kantz, Phys. Rev. E 78, 051104 (2008)

    ADS  MathSciNet  Google Scholar 

  167. A. Cairoli, A. Baule, Phys. Rev. Lett. 115, 110601 (2015)

    ADS  Google Scholar 

  168. R. Metzler, J.H. Jeon, A.G. Cherstvy, E. Barkai, Phys. Chem. Chem. Phys. 16, 24128 (2014)

    Google Scholar 

  169. A. Cairoli, R. Klages, A. Baule, Proc. Natl. Acad. Sci. USA 115(22), 5714 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reza Rahimi Tabar .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabar, M.R.R. (2019). Applications and Outlook. In: Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-18472-8_22

Download citation

Publish with us

Policies and ethics